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Abstract—Approximate Dynamic Inversion (ADI) has been
established as a method to control minimum-phase, nonaffine-in-
control systems. Previous results have shown that for single-input
nonaffine-in-control systems, every ADI controller admits a linear
Proportional-Integral (PI) realization that is largely independent
of the nonlinear function that defines the system. In this report,
we first present an extension of the ADI method for single-input
nonaffine-in-control systems that renders the closed-loop error
dynamics independent of the reference model dynamics. The
equivalent PI controller will be derived and both of these results
are then extended to multi-input nonaffine-in-control systems.

Index Terms—Dynamic inversion, feedback linearization,
proportion-integral control, PI control.

I. INTRODUCTION

DYNAMIC inversion (DI) or feedback linearization is
a popular control design method that is well suited

for minimum-phase nonlinear systems [1] [2, Chapter 13].
DI addresses the problem of designing a controller to trans-
form a nonlinear system to a linear one by feedback. To
overcome some limitations imposed by the requirements of
exact linearization, approximate linearization has emerged as
a viable alternative, where the problem is relaxed to enlarge the
class of admissible controllers [3]. A notable departure from
the approximate linearization literature is [4], where tracking
control of nonaffine-in-control systems are considered.

In [4], an Approximate Dynamic Inversion (ADI) con-
trol law was proposed that drives a given minimum-phase
nonaffine-in-control system towards a chosen stable reference
model. The control signal was defined as a solution of “fast”
dynamics, and Tikhonov’s Theorem [2, Theorem 11.2, pp.
439 – 440] in singular perturbation theory was used to
show that the control signal approaches the exact dynamic
inversion solution and that the system states approach those
of the reference model when the controller dynamics are made
sufficiently fast.

In [5], the authors showed that for the single-input case,
every ADI control law as formulated in [4] admits a linear

Proportional-Integral (PI) model reference controller realiza-
tion. The key characteristic of the equivalent PI controller is
that it is largely independent of the system’s nonlinearities,
in contrast to the original ADI control law in [4]. However,
when the controller has fast dynamics as required of the ADI
method, the resulting PI controller is a high-gain controller
with associated robustness problems [6].

Note that this equivalence holds only for the time response
when applied to the exact system. The equivalence do not
hold when applied to perturbed systems [7]. Even when
restricted to perfectly known minimum-phase Linear Time-
Invariant systems, the closed-loop systems differ in robustness
properties [7].

This report extends the ADI method by decoupling the
error dynamics specification from the reference model dy-
namics. This in essence decouples the “steady state” response
specification from the transient response specification, when
the reference model response is viewed as the “steady state”
response. The derivation of the equivalent PI controller for this
extension is very similar to [5]. A key result of this report is
to extend the previous statements of PI and ADI equivalence
to multi-input systems.

The report will proceed as follows. Section II presents the
ADI extension and PI equivalent controller for single-input
systems. The second (and last) section extends these results to
multi-input systems.

II. EQUIVALENCE FOR SINGLE-INPUT SYSTEMS

A. Nomenclature

In the sequel, italicized symbols (eg. x) denote scalars,
boldface lowercase letters (eg. x) denote column vectors, and
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boldface uppercase letters (eg. A) denote matrices. Upright
text subscripts (eg. xr with text subscript “r” to indicate state
of reference model) are variable class indicators, and italicized
subscript symbols (eg. xρ with subscript “ρ” to indicate the ρ-
th element of the vector x) are variables for numeric quantities.

B. Approximate Dynamic Inversion for Single Input Systems

Here, the ADI method [4] for single input systems is stated
with a minor generalization, together with the main result. The
proof in [4] applies with appropriate (trivial) substitutions, and
will not be replicated here.

Consider an n-th order single-input nonaffine-in-control
system of relative degree ρ, expressed in normal form

ẋ(t) = f(x(t), z(t), u(t)), x(0) = x0,

ż(t) = g(x(t), z(t), u(t)), z(0) = z0,
(1a)

where
x(t) = [x1(t), x2(t), . . . , xρ(t)]

T ∈ Rρ,

f(x(t), z(t), u(t)) =


x2(t)

...
xρ(t)

f(x(t), z(t), u(t))

 ∈ Rρ,
(1b)

for (x(t), z(t), u(t)) ∈ Dx × Dz × Du, and the sets Dx ⊂
Rρ, Dz ⊂ Rn−ρ and Du ⊂ R are domains containing the
origins. Here, [xT(t), zT(t)]T denotes the state vector of the
system, u(t) is the control input, and f : Dx×Dz×Du 7→ R,
g : Dx × Dz × Du 7→ Rn−ρ are continuously differentiable
functions of their arguments. Furthermore, assume that ∂f

∂u is
bounded away from zero for (x(t), z(t), u(t)) ∈ Ω ⊂ Dx ×
Dz × Du, where Ω is a compact set. That is, there exists
b0 > 0 such that |∂f∂u | > b0 for all (x(t), z(t), u(t)) ∈ Ω.
Note that |∂f∂u | > b0 > 0 implies sign

(
∂f
∂u

)
∈ {−1,+1} is

a constant. In addition, assume that the function f cannot be
inverted explicitly with respect to u.

It is desired for x(t) to track the states of a stable ρ-th order
linear reference model described in the controllable canonical
form

ẋr(t) = Arxr(t) + Brr(t), xr(0) = xr0, (2a)

where

xr(t) = [xr1(t), xr2(t), . . . , xrρ(t)]T ∈ Rρ, (2b)

and the Hurwitz Ar and column vector Br have the form

Ar =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−ar0 −ar1 · · · −ar(ρ−1)

 , Br =


0
...
0
br

 . (2c)

Here, r(t) is a continuously differentiable reference input
signal, and xr(t) is the state of the reference model.

Let e(t) = x(t)− xr(t) ∈ Rρ be the tracking error signal,
and let the desired stable error dynamics be specified by

ė(t) = Aee(t), (3)

where Ae is Hurwitz and has identical structure as Ar, but
with coefficients aei in place of ari for i ∈ {0, 1, . . . , ρ− 1}.

Observe that in [4], Ae was set equal to Ar, while in the
above, an independent Hurwitz matrix Ae can be specified.
In typical applications, Ar and Br can be used to specify
the desired system response to excitation r(t), and Ae can be
used to independently specify the desired error dynamics. That
is, how quickly the system response approaches that of the
reference model. Thus the preceding is a slight generalization
of the ADI as formulated in [4].

The open loop (time-varying) error dynamics are then given
by the system

ė(t) = f(e(t) + xr(t), z(t), u(t))−Arxr(t)−Brr(t),

ż(t) = g(e(t) + xr(t), z(t), u(t)),
(4)

with initial conditions e(0) = e0, z(0) = z0. Define the
selector vector

c = [0, . . . , 0, 1]T ∈ Rρ.

The ideal dynamic inversion control is then found by solving
for u(t) from the system of ρ equations

f(x(t), z(t), u(t))−Arxr(t)−Brr(t) = Aee(t).

If this is a system of ρ arbitrary nonlinear equations, there are
in general no solutions of u(t) since there are more equations
than available degrees of freedom. However, by the judicious
choice of system, reference model and error dynamics repre-
sentation, the first (ρ−1) equations are automatically satisfied.
Therefore, solving the above ρ equations reduces to solving
the single equation

f(x(t), z(t), u(t))−cT
(
Arxr(t)+Brr(t)

)
= cTAee(t), (5)

resulting in the exponentially stable closed-loop tracking error
dynamics (3). Since (5) cannot (in general) be solved explicitly
for u(t), the approximate dynamic inversion controller for the
above formulation can be given in similar form to [4] as

εu̇(t) = − sign
(
∂f

∂u

)
f̃(t, e(t), z(t), u(t)), (6a)
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where
f̃(t, e(t), z(t), u(t)) = f(e(t) + xr(t), z(t), u(t))

− cT
(
Arxr(t) + Brr(t) + Aee(t)

)
,

(6b)

for some initial control u(0) = u0. Here, ε is a posi-
tive controller design parameter, chosen sufficiently small
to achieve closed-loop stability and approximate dynamic
inversion. Observe that (6) relaxes the requirement for exact
dynamic inversion while increasing the control in a direction to
reduce the discrepancy (5) so as to approach the exact dynamic
inversion solution.

Let u = h(t, e, z) be an isolated root of f̃(t, e, z, u) = 0.
In accordance with the theory of singular perturbations [2,
Chapter 11], the reduced system for (4) is

ė(t) = Aee(t), e(0) = e0,

ż(t) = g(e(t) + xr(t), z(t), h(t, e(t), z(t))), z(0) = z0.

With v = u − h(t, e, z), and τ = t/ε, the boundary layer
system is

dv

dτ
= − sign

(
∂f

∂u

)
f̃(t, e, z, v + h(t, e, z)). (7)

The main result of [4] for single-input systems, adapted for
the generalization above, is stated below.

Theorem 1. Assume that the following conditions hold for all

(t, e, z, u − h(t, e, z), ε) ∈ [0,∞) × De,z × Dv × [0, ε0] for

some domains De,z ⊂ Rn and Dv ⊂ R, which contain the

origins.

1) On any compact subset of De,z × Dv , the functions f

and g and their first partial derivatives with respect

to (e, z, u), and the first partial derivative of f with

respect to t are continuous and bounded, h(t, e, z)
and ∂f

∂u (t, e, z, u) have bounded first derivatives with

respect to their arguments, ∂f
∂e (t, e, z, h(t, e, z)) and

∂f
∂z (t, e, z, h(t, e, z)) are Lipschitz in e and z, uniformly

in t.

2) The origin is an exponentially stable equilibrium of the

system

ż(t) = g(xr(t), z(t), h(t,0, z(t))).

The mapping (e, z) 7→ g(e+xr(t), z, h(t, e, z)) is con-

tinuously differentiable and Lipschitz in (e, z) uniformly

in t.

3) (t, e, z, v) 7→ |∂f∂u (t, e, z, v + h(t, e, z))| is bounded

from below by some positive number for all (t, e, z) ∈
[0,∞)×De,z .

Then the origin of (7) is exponentially stable. Moreover, let

Ωv be a compact subset of Rv , where Rv ⊂ Dv denotes the

region of attraction of the autonomous system

dv

dτ
= − sign

(
∂f

∂u

)
f̃(0, e0, z0, v + h(0, e0, z0)).

Then for each compact subset Ωe,z ⊂ De,z , there exists a

positive constant ε∗ and T > 0 such that ∀ t ≥ 0, (e0, z0) ∈
Ωe,z , u0 − h(0, e0, z0) ∈ Ωv , and ∀ ε ∈ (0, ε∗), system (1),
(6) has a unique solution xε(t) on [0,∞) and

xε(t) = xr(t) +O(ε)

holds uniformly for t ∈ [T,∞).

A proof of Theorem 1 is provided in [4]. In summary,
Theorem 1 states that when regularity assumptions on the
system dynamics are satisfied to ensure existence and unique-
ness of solutions, and system (1) is minimum phase and
controllable, the ADI control signal u(t) approaches that of
the exact dynamic inversion solution, and the system states
x(t) approaches and maintains within O(ε) of the reference
model states xr(t) for a sufficiently small ε. See [4] for ways
to verify the assumptions and further discussions.

C. Equivalent PI Controller

Here, we recall the main result of [5], which extends trivially
for the above ADI generalization. For notational convenience
in the sequel, let sign

(
∂f
∂u

)
= α.

Lemma 1. For every Approximate Dynamic Inversion con-

troller (6) with u(0) = u0, there exists a linear Proportional-

Integral model reference controller realization

u(t) = −1
ε
α
(
cTe(t)− g(t)

)
, (8a)

where

g(t) =
∫ t

0

cTAee(λ) dλ, (8b)

and g(0) = cTe(0) + εαu0.

Proof: Observe that from (1), we have

f(x(t), z(t), u(t)) = cTẋ(t), (9)

and from (2), we have

cT
(
Arxr(t) + Brr(t)

)
= cTẋr(t). (10)

Substituting (9) and (10) in the ADI control law (6) gives

εu̇(t) = −αcT
(
ẋ(t)− ẋr(t)−Aee(t)

)
,

= −αcT
(
ė(t)−Aee(t)

)
, (11)
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which can be integrated in time to yield (8). Setting g(0) =
cTe(0) + εαu0 recovers the original controller initial value
u(0) = u0.

Note that α = sign
(
∂f
∂u

)
∈ {−1,+1} satisfy α2 = 1.

It can be seen that the result (8) is a PI controller acting
on the error between the system states and the states of the
reference model. Furthermore, observe that when expressed in
the error coordinates, e(t), the PI controller is not explicitly
dependent on Ar that specifies the reference model dynamics,
in contrast to the form in [5]. This characteristic is the result of
introducing the independent matrix Ae for the error dynamics
specification. Finally, it is important to note that (9) and (10)
are true by definition, while (3) is a design specification
that the controller attempts to achieve, so that (3) cannot be
substituted in (11) for further simplifications. From (8), it is
apparent that the PI controller attempts to achieve (3), which
is equivalent to achieving (5).

The significance of Lemma 1 is threefold:

1) The PI controller allows a very simple exact realization
of the ADI control law.

2) The PI controller is a linear realization of a (in general)
nonlinear control law.

3) The PI controller realization is independent of the non-
linear function f(x(t), z(t), u(t)) in (1b), except for the
sign of the control effectiveness, α = sign

(
∂f
∂u

)
.

The existence of a linear realization of a nonlinear control law
hinges critically on the structure of the underlying system,
reference model, error dynamics and control law. Note that
the PI realization does not apply to the ADI variant in [8]
as that variant uses the Jacobian map ∂f

∂u (x(t), z(t), u(t)) in
place of sign

(
∂f
∂u

)
, which is constant by assumption. The main

practical challenge when applying the method of [8] lies in
obtaining a sufficiently accurate description of the Jacobian
map, in addition to the nonlinear function f(x(t), z(t), u(t))
in (1b).

As an aside, adaptive variants to [4] have been proposed
in [9]–[14] in which the nonlinear function f(x(t), z(t), u(t))
is assumed unknown. These variants attempt to estimate
the unknown function f(x(t), z(t), u(t)), and construct an
analogous ADI control law based on the estimate. Since the
PI controller realizes the ADI control law exactly without
explicit dependence on f(x(t), z(t), u(t)), it appears that
these approximation based adaptive variants are unnecessary.
Numerical results in [5], [15] show that for the single-
input case, the PI controller achieves/exceeds the tracking
performance of the adaptive variants proposed in [13], [14]

respectively.

III. EQUIVALENCE FOR MULTI-INPUT SYSTEMS

Here we extend the above results to multi-input nonaffine-
in-control systems.

A. Approximate Dynamic Inversion for Multi-Input Systems

Here, the ADI method [4] for multi-input systems is stated
with a minor generalization analogous to the single input case.
Consider a multi-input nonlinear system expressed in normal
form

ẋ(t) = f(x(t), z(t),u(t)), x(0) = x0,

ż(t) = g(x(t), z(t),u(t)), z(0) = z0,
(12a)

where
u(t) = [u1(t), u2(t), . . . , um(t)]T ∈ Rm,

x(t) =
[
xT

1 (t),xT
2 (t), . . . ,xT

m(t)
]T ∈ Rρ,

f(x(t), z(t),u(t)) =


f1(x(t), z(t),u(t))
f2(x(t), z(t),u(t))

...
fm(x(t), z(t),u(t))

 ∈ Rρ,

(12b)

and for k ∈ {1, 2, . . . ,m}, with
∑m
k=1 ρk = ρ,

xk(t) = [xk1(t), xk2(t), . . . , xkρk
(t)]T ∈ Rρk ,

fk(x(t), z(t),u(t)) =


xk2(t)

...
xkρk

(t)
fk(x(t), z(t),u(t))

 ∈ Rρk .
(12c)

Here, [xT(t), zT(t)]T ∈ Rn is the state of the n-th order
system with m inputs, and u(t) is the vector of control inputs.

The objective is to design u(t) so that the state x(t) tracks
the state xr(t) of the stable ρ-th order reference model in
Brunovsky canonical form

ẋr(t) = Arxr(t) + Brr(t), xr(0) = xr0, (13a)

where
r(t) = [r1(t), r2(t), . . . , rm(t)]T ∈ Rm,

xr(t) =
[
xT

r1(t),xT
r2(t), . . . ,xT

rm(t)
]T ∈ Rρ,

Ar =


Ar1

. . .

Arm

 , Br =


Br1

. . .

Brm

 ,
(13b)
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and for k ∈ {1, 2, . . . ,m}, with ρk as in (12),

xrk(t) = [xrk1(t), xrk2(t), . . . , xrkρk
(t)]T ∈ Rρk ,

Ark =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−ark1 −ark2 · · · −arkρk

, Brk =


0
...
0
brk

.
(13c)

Here, each Ark for k ∈ {1, 2, . . . ,m} is a specified Hurwitz
matrix, r(t) is the vector of continuously differentiable refer-
ence inputs, and xr(t) is the state of the reference model.

The tracking error vector can be defined and decomposed
in correspondence with the above system and reference model
state variables as

e(t) = x(t)− xr(t)

=
[
eT
1 (t), eT

2 (t), . . . , eT
m(t)

]T ∈ Rρ,

where for k ∈ {1, 2, . . . ,m},

ek(t) = xk(t)− xrk(t)

= [ek1(t), ek2(t), . . . , ekρk
(t)]T ∈ Rρk ,

and for each k ∈ {1, 2, . . . ,m}, i ∈ {1, 2, . . . , ρk},

eki(t) = xki(t)− xrki(t).

Let the desired stable error dynamics be specified by

ė(t) = Aee(t), (14)

where Ae has identical structure as Ar, but with block entries
Aek in place of Ark for k ∈ {1, 2, . . . ,m}, each Aek is chosen
to be Hurwitz, and has identical structure as Ark, but with
coefficients aeki in place of arki for i ∈ {1, 2, . . . , ρk}. Similar
to the single-input case, this extension allows the desired error
dynamics to be specified independently of the reference model
dynamics.

The open loop (time-varying) error dynamics are then given
by the system

ė(t) = f(e(t) + xr(t), z(t),u(t))−Arxr(t)−Brr(t),

ż(t) = g(e(t) + xr(t), z(t),u(t)),
(15)

with initial conditions e(0) = e0, z(0) = z0. For k ∈
{1, 2, . . . ,m}, let

ck = [0, . . . , 0, 1]T ∈ Rρk .

The ideal dynamic inversion control is found by solving for
u(t) from the system of ρ equations

f(x(t), z(t),u(t))−Arxr(t)−Brr(t) = Aee(t),

or equivalently, solving the system of m scalar equations

fk(x(t), z(t),u(t))− cT
k

(
Arkxrk(t) + Brkrk(t)

)
= cT

kAekek(t),
(16)

for k ∈ {1, 2, . . . ,m}, resulting in the exponentially stable
closed-loop tracking error dynamics (14). Since (16) cannot
(in general) be solved explicitly for u(t), the approximate
dynamic inversion controller for the above formulation can
be given in similar form to [4] as

εu̇(t) = Pf̃(t, e(t), z(t),u(t)) (17a)

where P ∈ Rm×m is a controller parameter, and for k ∈
{1, 2, . . . ,m}, the k-th element of f̃(t, e(t), z(t),u(t)) is

f̃k(t, e(t), z(t),u(t)) = fk(e(t) + xr(t), z(t),u(t))

− cT
k

(
Arkxrk(t) + Brkrk(t) + Aekek(t)

)
,

(17b)

for some initial control u(0) = u0. Observe that for the multi-
input case, there is no analogue to the sign of the control
effectiveness, sign

(
∂f
∂u

)
, and the controller design parameters

are ε, P, Ark, Aek and Brk for k ∈ {1, 2, . . . ,m}.

Let u = h(t, e, z) be an isolated root of f̃(t, e, z,u) = 0.
The reduced system for (15) is

ė(t) = Aee(t), e(0) = e0,

ż(t) = g(e(t) + xr(t), z(t),h(t, e(t), z(t))), z(0) = z0.

With v = u − h(t, e, z), and τ = t/ε, the boundary layer
system is

dv
dτ

= Pf̃(t, e, z,v + h(t, e, z)). (18)

The main result of [4] for multi-input systems, adapted for the
above generalization, is stated below.

Theorem 2. Let the following conditions hold for all (t, e,u−
h(t, e, z), ε) ∈ [0,∞)×De,z×Dv× [0, ε0] for some domains

De,z ⊂ Rn and Dv ⊂ Rm that contain the origins.

1) On any compact subset of De,z × Dv , the functions

f and g and their first partial derivatives with respect

to (e, z,u), and the first partial derivative of f with

respect to t are continuous and bounded, h(t, e, z)
and ∂f

∂u (t, e, z,u) have bounded first derivatives with

respect to their arguments, ∂f
∂e (t, e, z,h(t, e, z)) and

∂f
∂z (t, e, z,h(t, e, z)) are Lipschitz in e and z, uniformly

in t.

2) The origin is an exponentially stable equilibrium of the

system

ż(t) = g(xr(t), z(t),h(t,0, z(t))).
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The mapping (e, z) 7→ g(e+xr(t), z,h(t, e, z)) is con-

tinuously differentiable and Lipschitz in (e, z) uniformly

in t.

3) For every (t, e, z) ∈ [0,∞)×De,z , all the eigenvalues

of

P

[
∂ f̃
∂u

(t, e, z,v + h(t, e, z))

]
have negative real parts bounded away from 0.

Then the origin of (18) is exponentially stable. Moreover, let

Ωv be a compact subset of Rv , where Rv ⊂ Dv denotes the

region of attraction of the autonomous system

dv
dτ

= Pf̃(0, e0, z0,v + h(0, e0, z0)).

Then for each compact subset Ωe,z ⊂ De,z , there exist a

positive constant ε∗ and T > 0 such that ∀t ≥ 0, (e0, z0) ∈
Ωe,z , u0 − h(0, e0, z0) ∈ Ωv , and ∀ε ∈ (0, ε∗), system (12),
(17) has a unique solution xε(t) on [0,∞) and

xε(t) = xr(t) +O(ε)

holds uniformly for t ∈ [T,∞).

In essence, Theorem 2 is the multi-input extension of
Theorem 1. See [4] for ways to verify the assumptions and
further discussions.

B. Equivalent PI Controller

Here, we extend the previous results to show that for the
multi-input case, there also exists an equivalent PI controller.

Lemma 2. For every Approximate Dynamic Inversion con-

troller (17) with u(0) = u0, there exist a linear Proportional-

Integral model reference controller realization

u(t) =
1
ε
P (v(t)−w(t)) (19a)

where
v(t) =

[
cT
1 e1(t), cT

2 e2(t), . . . , cT
mem(t)

]T ∈ Rm,

w(t) =


∫ t
0
cT
1 Ae1e1(λ) dλ∫ t

0
cT
2 Ae2e2(λ) dλ

...∫ t
0
cT
mAemem(λ) dλ

 ∈ Rm,
(19b)

and w(0) = v(0)− εP−1u0.

Proof: For k ∈ {1, 2, . . . ,m}, we have from (12),

fk(x(t), z(t),u(t)) = cT
k ẋk(t), (20)

and from (13), we have

cT
k

(
Arkxrk(t) + Brkrk(t)

)
= cT

k ẋrk(t). (21)

Substituting (20) and (21) in the multi-input ADI control
law (17) gives

εu̇(t) = P


cT
1

(
ẋ1(t)− ẋr1(t)−Ae1e1(t)

)
cT
2

(
ẋ2(t)− ẋr2(t)−Ae2e2(t)

)
...

cT
m

(
ẋm(t)− ẋrm(t)−Aemem(t)

)



= P


cT
1

(
ė1(t)−Ae1e1(t)

)
cT
2

(
ė2(t)−Ae2e2(t)

)
...

cT
m

(
ėm(t)−Aemem(t)

)

 ,
which can be integrated in time to yield (19). Setting w(0) =
v(0) − εP−1u0 recovers the original controller initial value
u(0) = u0. Since P must be chosen to satisfy assumption 3
of Theorem 2, all eigenvalues of P

[
∂ f̃
∂u

]
have strictly negative

real parts, which implies that P
[
∂ f̃
∂u

]
have full rank. This in

turn implies that P has full rank which ensures the existence
of P−1.

In (19), the vector v(t) is formed from elements of the error
vector e(t), and w(t) is formed from linear combinations of
the integral of the error vector. It can be seen that (19) is a
multi-input PI controller that realizes the ADI controller (17).
Similar to the single-input case, we note that the PI realization
does not apply to the ADI variant in [8].

IV. CONCLUSIONS

An extension of the Approximate Dynamic Inversion (ADI)
method for minimum-phase nonaffine-in-control systems was
presented that renders the error dynamics independent of
the reference model dynamics. In essence, this decouples
the “steady state” response specification from the transient
response specification, where the “steady state” response is
specified by the reference model dynamics while the transient
response is independently specified by the error dynamics. It
was shown that every ADI control law admits an equivalent
linear Proportional-Integral (PI) controller realization that is
largely independent of the nonlinearities of the system, for
both single-input and multi-input systems.

We note that this equivalence must be interpreted with
caution. As shown in [7], this equivalence holds only for the
time response, and only when applied to the exact system. In
particular, even when specializing to minimum-phase linear
time-invariant systems, they differ in robustness properties.
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